Databricks is a company founded by the original creators of Apache Spark. Databricks develops a web-based platform for working with Spark, that provides automated cluster management and IPython-style notebooks.
Apache Spark is an open-source distributed general-purpose cluster-computing framework. Spark provides an interface for programming entire clusters with implicit data parallelism and fault tolerance.
There are 14 articles tagged with Databricks / Spark.
Last week I was working on a Databricks script that needed to produce a Slack message as its final outcome. I lifted some code that used a Slack client that was PIP-installed. Unfortunately, I could not use the package on my cluster. Fortunately, the Slack API is so simple, that you don’t really need a package to post a simple message to a channel. In this blog I’ll show you the simplest way of producing awesome messages in Slack.
When you are training a machine learning image classification model, you often need to resize the images your dataset into smaller ones. When you retrain your model on new data, you resize the images once more. In this blog I’ll share how S3 can be used to cache the resized images.
Today we’ll be looking at sorting and reducing an array of a complex data type. I’m using Databricks to do Spark, but I’m sure the code is compatible. I’ll be using Spark SQL to show the steps. I’ve tried to keep the data as simple as possible. The example should apply to scenarios that are more complex.
As an engineer, I love to parametrise my applications. That’s why I love the widget-feature of Databricks notebooks, which allows me to do this with a nice UI. In this blog I’ll explore how to build a True/False widget and a list widget. I also show how to validate the values of required fields.